
Source-Code Instrumentation and Quantification of Events
Robert E. Filman

RIACS
NASA Ames Research Center, MS 269/2

Moffett Field, CA 94035 U.S.A.
+1 650–604–1250

rfilman@mail.arc.nasa.gov

Klaus Havelund
Kestrel Technology

NASA Ames Research Center, MS 269/2
Moffett Field, CA 94035 U.S.A

+1 650–604–3366

havelund@email.arc.nasa.gov

ABSTRACT
Aspect-Oriented Programming is making quantified programmatic
assertions over programs that otherwise are not annotated to re-
ceive these assertions. Varieties of AOP systems are characterized
by which quantified assertions they allow, what they permit in the
actions of the assertions (including how the actions interact with
the base code), and what mechanisms they use to achieve the
overall effect. Here, we argue that all quantification is over dy-
namic events, and describe our preliminary work in developing a
system that maps dynamic events to transformations over source
code. We discuss possible applications of this system, particularly
with respect to debugging concurrent systems.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures – aspects. D.3.2 [Programming Languages] Language Clas-
sifications – aspect-oriented programming. D.2.3 [Software Engi-
neering] Coding Tools and Techniques. D.2.5 [Testing and De-
bugging] Debugging aids.

General Terms
Languages.

Keywords
Quantification, events, dynamic events, debugging, program
transformation, model checking.

1. INTRODUCTION
Elsewhere, we have argued that the programmatic essence of As-
pect-Oriented Programming is making quantified programmatic
assertions over programs that otherwise are not annotated to re-
ceive these assertions [10,12]. That is, in an AOP system, one
wants to be able to say things of the form, “In this program, when
the following happens, execute the following behavior,” without
having to go around marking the places where the desired behav-
ior is to happen. Varieties of AOP systems are characterized by
which quantified assertions they allow, what they permit in the
actions of the assertions (including how the actions interact with
the base code), and what mechanisms they use to achieve the
overall effect. In this paper, we describe our preliminary work in
developing a system that takes the notion of AOP as quantifica-
tion to its logical extreme. Our goal is to develop a system where
behavior can be attached to any event during program execution.
We describe the planned implementation of this system and dis-

cuss possible applications of this technology, particularly with
respect to debugging and validating concurrent systems.

2. EVENTS
Quantification implies matching a predicate about a program.
Such a predicate must be over some domain. In the quantifica-
tion/implicit invocation papers, we distinguished between static
and dynamic quantification.

Static quantification worked over the structure of the program.
That is, with static quantification, one could reference the pro-
gramming language structures in a system. Examples of such
structures include reference to program variables, calls to subpro-
grams, loops, and conditional tests.

Many common AOP implementation techniques can be under-
stood in terms of quantified program manipulation on the static
structure of a program. For example, wrapping (e.g., as seen in
Composition Filters [1], OIF [11], or AspectJ [19,20]) is effec-
tively embedding particular function bodies in more complex
behavior. AspectJ and OIF also provide a call-side wrapping,
which can be understood as surrounding the calling site with the
additional behavior. An operation such as asserting that class A’s
use of x is the same as class B’s use of y in Hyper/J [22] can be
realized by substituting a reference to a common generated vari-
able for x in the text of A, and y in B.

Dynamic quantification, as described in those papers, speaks to
matching against events that happen in the course of program
execution. An example of dynamic quantification is the jumping-
aspect problem [2], where a method behaves differently depend-
ing upon whether or not it has been called from within (in the
calling-stack sense) a specified routine. Other examples of inter-
esting dynamic events include the stack exceeding a particular
size, the fifth unsuccessful call to the login routine with a different
password, a change in the number of references to an object, a
confluence of variable values (e.g., when x + y > z), the blocking
of a thread on a synchronization lock, or even a change in the
executing thread. The cflow operator in AspectJ is a dynamic
quantification predicate.

We are coming to the belief that all events are dynamic. Static
quantification should be understood as just the subspecies of
events that can be simply inferred, on a one-to-one basis, from the
structures of a program. Static quantification is attractive for its
straightforward AOP implementation, lower complexity, and in-
dependence of programming environment implementation, but
unless one starts processing the program comments, there’s little



in the static structure of a program that isn’t marked by its dy-
namic execution.

If the abstract syntax tree is the domain of static quantification,
what is the domain of dynamic quantification? Considering the
examples in this section, it really has to be events that change the
state (both data state and “program counter”) of the base lan-
guage’s abstract interpreter. However, defining anything in terms
of the abstract interpreter is problematic. First, as was illustrated
in Smith’s work on 3-Lisp [5], programming languages are not
defined in terms of their abstract interpreters. The same language
can be implemented with many different interpreters. The set of
events generated by one implementation of a language may not
correspond to the events generated by another. For example, a
run-time environment that manages its own threads is not at all
the same as one that relies on the underlying operating system for
thread management. Neither is the same as one that takes advan-
tage of the multiple processors of a real multi-processor machine.
Second, compilers have traditionally been allowed to optimize—
rearrange programs while preserving their input-output semantics.
An optimizing compiler may rearrange or elide an “obvious” se-
quence of expected events. And finally, the data state of the ab-
stract interpreter (including, as it does, all of memory) can be a
grand and awkward thing to manipulate.

3. A LANGUAGE OF EVENTS
We view these limitations as bumps in the road, rather than barri-
ers. While we may not be able to capture everything that goes on
in a particular interpretive environment, we can get close enough
for most practical purposes. The strategy we adopt is to argue that
most dynamic events, while not necessarily local to a particular
spot in the source code, are nevertheless tied to places in the
source code. Table 1 illustrates some primitive events and their
associated code loci.

Users are likely to want to express more than just primitive
events. The language of events will also want to describe relation-
ships among events, such as that one event occurred before an-
other, that a set of events match some particular predicate, that an
event occurred within a particular timeframe, or that no event
matching a particular predicate occurred. This suggests that the
event language will need (1) abstract temporal relationships, such
as “before” and “after,” (2) abstract temporal quantifiers, such as
“always” and “never”, (3) concrete temporal relationships refer-
ring to clock time, (4) cardinality relationships on the number
times some event has occurred, and (5) aggregation relationships
for describing sets of events.

4. SYSTEM ARCHITECTURE
We envision a mechanism where a description of a set of event-
action pairs, along with a program, would be presented to a com-
piler. Each event action pair would include a sentence describing
the interesting event in the event language and an action to be
executed when that event is realized. Said actions would be pro-
grams, and would be parameterized with respect to the elements
of the matching events. Examples of such assertions are:

� On every call to method foo in a class that implements the
interface B, replace the second parameter of the call to foo
with the result of applying method f to that parameter.

� Whenever the value of x+y in any object of class A ever ex-
ceeds 5, print a message to the log and reset x to 0.

� If a call to method foo occurs within (some level down on
the stack) method baz but without an intervening call to
method mumble, omit the call to method gorp in the body of
foo.

Table 1: Events and event loci

Event Syntactic locus

Accessing the value of a variable or field References to that variable

Modifying the value of a variable or field Assignments to that variable

Invoking a subprogram Subprogram calls

Cycling through a loop Loop statements

Branching on a conditional The conditional statement

Initializing an instance The constructors for that object

Throwing an exception Throw statements

Catching an exception Catch statements

Waiting on a lock Wait and synchronize statements

Resuming after a lock wait Other's notify and end of synchronizations

Testing a predicate on several fields Every modification of any of those fields

Changing a value on the path to another Control and data flow analysis over statements (slices)

Swapping the running thread Not reliably accessible, but atomization may be possible

Being below on the stack Subprogram calls

Freeing storage Not reliably accessible, but can try using built-in primitives

Throwing an error Not reliably accessible; could happen anywhere



These examples are in natural language. Of course, any actual
system will employ something formal.

Clearly, a sufficiently “meta” interpretation mechanism would
give us access to many interesting events in the interpreter, ena-
bling a more direct implementation of these ideas. It has often
been observed that meta-interpretative and reflective systems can
be used to build AOP systems [29]. However, meta-interpreters
have traditionally exhibited poor performance. We are looking for
implementation strategies where the cost of event recognition is
only paid when event recognition is used. This suggests a com-
piler that would transform programs on the basis of event-action
assertions. Such a compiler would work with an extended abstract
syntax tree representation of a program. It would map each predi-
cate of the event language into the program locations that could
affect the semantics of that event. Such a mapping requires not
only abstract syntax tree generation (parsing) and symbol resolu-
tion, but also developing primitives with respect to the control and
data flow of the program, determining the visibility and lifetimes
of symbols, and analyzing the atomicity of actions with respect to
multiple threads.

Java compiles into an intermediate form (Java byte codes). In
dealing with Java, there is also the choice as to whether to process
with respect to the source code or the byte code. Each has its ad-
vantages and disadvantages. Byte codes are more real: many of
the issues of interest (actual access to variables, even the power
consumption of instructions) are revealed precisely at the byte
code level. Working with byte codes allows one to modify classes
for which one hasn’t the source code, including the Java language
packages themselves. (JOIE [3] and Jmangler [21] are examples
of an AOP systems that perform transformations at the byte code
level.) On the other hand, source code is more naturally under-
standable, allows writing transformations at the human level, and
eliminates the need for understanding the JVM and the actions of
the compiler. (De Volder’s Prolog-based meta-programming sys-
tem is an example of source-level transformation for AOP [6,7].)
We find the complexity arguments appealing. Thus, our imple-
mentation plan is to work at the source code level.

5. EXAMPLES
Event quantification is a general framework for supporting aspect
oriented programming. It can be used for functionality enhance-
ment, where a program is extended with aspects that add new
functionality. For example, a program could be made more reli-
able by transforming its database update events to also send mes-
sages to a backup log. Although functionality extension is a gen-
eral goal for AOP, we instead discuss some examples within the
area of program verification. (In some cases, we expect to be able

to extend program behavior for functionality insurance: recover-
ing from some classes of program failure.)

In previous work, we studied various program verification tech-
niques for analyzing the correctness of programs. Our work can be
classified into two categories: program monitoring [17] and pro-
gram scheduling [16,27]. The latter is often called model check-
ing.

5.1 Monitoring
Specification-based monitoring consists of monitoring the exe-
cution of a program, represented by a sequence of events, by vali-
dating the events against a requirements specification. The speci-
fication is written in some formal language, typically a temporal
logic [24]. For example, a typical requirement is, “Whenever
TEMP becomes 100 then within 3 seconds ALARM becomes
true.” A typical requirement specification has many such asser-
tions. We want to be able to run the program and monitor that
specification assertions hold throughout the event trace. The Java
PathExplorer system [17] implements this kind of capability. It
uses the byte-code engineering tool Jtrek [18] to instrument Java
byte code to emit events to an observer, which contains a data
structure representing the formulae to be checked. Every event
emitted from the running program causes a modification of the
data structure. A warning is raised when a specification is vio-
lated. We plan to experiment using event quantification at the
source code level instead of at the byte code level. The events to
be caught are obviously those implicitly referred to in the for-
mula—in the above example, updates to the variables TEMP and
ALARM. That is, whenever one of these variables is updated, an
event consisting of the variable name, the value, and a timestamp
can be emitted to the observer. (The evaluation of the temporal
formula can even be performed as part of the quantification action
instead of in a separate observer, if real-time performance is not
an issue.) Operating on the source code level simplifies creating
the instrumentation, as one can work in a high-level language, not
byte code. The commercial-available Temporal Rover system
performs specification-based monitoring, but does not do auto-
mated code instrumentation [8].

Algorithm-based monitoring, like specification-based moni-
toring, watches the execution of a program emitting events. Rather
than matching against user-defined specifications, algorithm-
based monitoring uses certain general algorithms for detecting
particular kinds of error conditions. Examples are algorithms for
detection of deadlock and data race potentials in concurrent pro-
grams. These algorithms are interesting since the actual deadlocks
or data races do not have to occur in an execution trace in order to
be identified as a potential problem. An arbitrary execution trace
will normally suffice to identify problems. For example, a cyclic
relationship between the locks in a program (thread T1 takes lock
A and then B, while thread T2 takes B and then A) is a potential
deadlock. A similar algorithm exists for data races [25]. These
algorithms have been implemented in PathExplorer using byte
code engineering, and we anticipate trying them out using event
quantification.

5.2 Scheduling
Thread scheduling consists of influencing a program’s schedul-
ing in order to explore more thread interleavings than would oth-
erwise be achieved with normal testing techniques. As an exam-
ple, the above mentioned deadlock situation can be explicitly

Source Java
code

Event-action
descriptions

Event-
Edit

compilation

Transform

AST

Target Java
code

Parse PrettyPrint
Source Java

code

Event-action
descriptions

Event-
Edit

compilation

Transform

AST

Transform

ASTAST

Target Java
code

Parse PrettyPrint

Figure 1: System Architecture



demonstrated by scheduling the threads such that T1 takes A, and
then T2 immediately takes B. Such a schedule might never be
seen during normal test of the program. Thread scheduling can be
achieved by introducing a centralized scheduler and forcing all
threads to communicate with that scheduler when shared data
structures (such as locks) are accessed. The scheduler then decides
which thread to run, while at the same time keeping track of its
scheduling choices. This information can then be used to direct
the program to explore new interleavings. We have earlier devel-
oped the Java PathFinder system [16, 27] for performing such
scheduling analysis using model checking. In order to avoid ex-
ploring the reachable subtree below a given program state several
times, states are stored in cache, and search is aborted when a
state has been visited before. Using quantification, we plan to
experiment with state-less model checking [15, 24] where a pro-
gram’s different interleavings are explored, but without storing
states. An example of program modification to detect
synchronization faults is ConTest [8].

6. RELATED WORK
De Volder and his co-workers [6,7] have argued for doing AOP
by program transformation, using a Prolog-based system working
on the text of Java programs. We want to extend those ideas to
program semantics, combining both the textual locus of dynamic
events and transformations requiring complex analysis of the
source code.

At the 1998 ECOOP AOP workshop, Fradet and Südholt [13]
argued that certain classes of aspects could be expressed as static
program transformations. They expanded this argument at the
1999 ECOOP AOP workshop to one of checking for robustness—
non-localized, dynamic properties of a system’s state [14]. Col-
combet and Fradet realized an implementation of these ideas in
[4], applying both syntactic and semantic transformations to en-
force desired properties on programs. In that system, the user can
specify a desired property of a program as a regular expression on
syntactically identified points in the program, and the program is
transformed into one that raises an exception when the property is
violated. Other transformational systems include, Ku a notational
attempt at formalizing transformation [27], and Schonger et al’s
proposal to express abstract syntax trees in XML and use XML
transformation tools for tree manipulation [26].

Nelson et al. identify three concern-level foundational composi-
tion operators: correspondence, behavioral semantics and bind-
ing [22]. Correspondence involves identifying names in different
entities that are “the same”—for data items, things that should
share storage; for functions, functional fragments that need to be
assembled into a whole. Behavioral semantics describe how the
functional fragments are assembled. Binding is the usual issue of
the statics and dynamics of system construction and change. They
discuss alternative formal techniques for establishing properties of
composed systems within this basis.

Walker and Murphy argue for events as appropriate “join points”
for AOP, and that the events exposed by AspectJ are inade-
quate [32].

7. CONCLUDING REMARKS
In this paper, we’ve examined the idea of implementing AOP
systems as programs transformed by quantified responses to dy-
namic events. Two comments about the place of such a system in
the order of things are worth making:

� We’ve been talking about implementation environments,
not software engineering. An underlying implementation
does not imply anything about the “right” organization of
“separate concerns” to present to a user. In particular, we
have been completely agnostic about the appropriate struc-
ture for the actions of action-event pairs. It may be the case
that unqualified use of an event language with raw action
code snippets is a software engineering wonder, but we
doubt it.

� An environment that can map from quantified dynamic
events to modified code would be an excellent environment
for experimenting with and building systems for AOP. In
some sense, these ideas can be viewed as a domain-specific
language for developing aspect-oriented languages.

8. ACKNOWLEDGMENTS
Our thanks to Tarang Patel and Tom Pressburger for their com-
ments on the draft of this paper.

9. REFERENCES
[1] Bergmans, L., and Aksit, M. Composing crosscutting con-

cerns using composition filters. Comm. ACM Vol. 44, No.
10, 2001, pp. 51–57.

[2] Brichau, J., De Meuter, W., and De Volder, K. Jumping as-
pects. Workshop on Aspects and Dimensions of Concerns,
ECOOP 2000, Cannes, France, Jun. 2000. http://trese.
cs.utwente.nl/Workshops/adc2000/papers/Brichau.pdf

[3] Cohen, G. Recombining concerns: Experience with trans-
formation. First Workshop on Multi-Dimensional Separation
of Concerns in Object-oriented Systems (OOPSLA '99), Oct.
1999, www.cs.ubc.ca/~murphy/multid-workshop-oopsla99/
position-papers/ws23-cohen.pdf

[4] Colcombet, T. and Fradet, P. Enforcing trace properties by
program transformation. Proc. 27th ACM Symp. Principles
of Programming Languages, Boston, Jan. 2000, pp. 54–66.

[5] des Rivieres, J. and Smith, B. C. The implementation of pro-
cedurally reflective languages. Conf. Record of the 1984
ACM Symposium on LISP and Functional Programming,
Austin, Texas, Aug. 1984, pp. 331–347.

[6] De Volder, K., Brichau, J., Mens, K., and D'Hondt, T. Logic
meta-programming, a framework for domain-specific aspect
programming languages. http://www.cs.ubc.ca/~kdvolder/
binaries/cacm-aop-paper.pdf

[7] De Volder, K., and D'Hondt, T. Aspect-oriented logic meta
programming. Proceedings of Meta-Level Architectures and
Reflection, Second International Conference, Reflection'99.
LNCS 1616, Springer-Verlag, 1999, pp. 250–272.

[8] Drusinsky, D. The Temporal Rover and the ATG Rover.
SPIN Model Checking and Software Verification, LNCS
1885, K. Havelund, J. Penix, and W. Visser (Eds.) Springer,
2000, pp. 323–330.

[9] Edelstein, O., Farchi, E., Nir, Y., Ratsaby, G., Ur, S. Multi-
threaded Java program test generation. IBM Systems Journal,
Vol. 41, No. 1, 2002, pp. 111–125.



[10] Filman, R.E. What is aspect-oriented programming, revis-
ited. Workshop on Advanced Separation of Concerns, 15th
European Conference on Object-Oriented Programming, Bu-
dapest, Jun. 2001. http://trese.cs.utwente.nl/Workshops/
ecoop01asoc/papers/Filman.pdf

[11] Filman, R. E., Barrett, S., Lee, D. D., and Linden, T. Insert-
ing ilities by controlling communications. Comm. ACM,
Vol. 45, No. 1, Jan. 2002, pp. 116–122.

[12] Filman, R. E. and Friedman, D. P. Aspect-oriented pro-
gramming is quantification and obliviousness. Workshop on
Advanced Separation of Concerns, OOPSLA 2000, Minnea-
polis, Oct. 2000. http://trese.cs.utwente.nl/Workshops/
OOPSLA2000/papers/filman.pdf

[13] Fradet, P. and Südholt, M. Towards a generic framework for
aspect-oriented programming, Third AOP Workshop,
ECOOP'98 Workshop Reader, LNCS, 1543, pp. 394–397,
Jul. 1998. trese.cs.utwente.nl/aop-ecoop98/papers/ Fradet.pdf

[14] Fradet, P and Südholt, M. An aspect language for robust
programming. Int. Workshop on Aspect-Oriented Program-
ming, ECOOP, Jun. 1999. http://trese.cs.utwente.nl/aop-
ecoop99/papers/fradet.pdf

[15] Godefroid P. Model checking for programming languages
using VeriSoft. Proc. of 24th ACM Symp. on Principles of
Programming Languages, Paris, Jan. 1997, pp. 174–186.

[16] Havelund K. and Pressburger T. Model checking Java pro-
grams using Java PathFinder. International Journal on Soft-
ware Tools for Technology Transfer, Vol. 2, No. 4, Apr.
2000, pp. 366–381.

[17] Havelund K. and Rosu, G. Monitoring Java programs with
Java PathExplorer. In Proceedings of the First International
Workshop on Runtime Verification (RV’01), Electronic Notes
in Theoretical Computer Science, Vol. 55, No. 2, Elsevier
Science, Paris, Jul. 2001.

[18] Jtrek. Compaq. http://www.compaq.com/java/download/jtrek

[19] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
and Griswold, W. G. An overview of AspectJ, Proceedings
ECOOP 2001, J. L. Knudsen (Ed.) Berlin: Springer-Verlag
LNCS 2072, pp. 327–353.

[20] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
and Griswold, W. G. Getting started with AspectJ. Comm.
ACM Vol. 44, No. 10, 2001, pp. 59–65.

[21] Kniesel, G., Costanza, P., and Austermann, M. JMangler–A
Framework for Load-Time Transformation of Java Class
Files. Proc. First IEEE International Workshop on Source
Code Analysis and Manipulation (SCAM 2001), Florence,
Nov. 2001, http://www.informatik.uni-bonn.de/~costanza/
SCAM_jmangler.pdf

[22] Nelson, T., Cowan, D. and Alencar, P. Supporting formal
verification of crosscutting concerns. Metalevel Architectures
and Separation of Crosscutting Concerns: Third Interna-
tional Conference, Reflection 2001, A. Yonezawa and S.
Matsuoka (Eds.) Sep. 2001, Kyoto, Berlin: Springer-Verlag,
LNCS 2192, pp. 153-169.

[23] Ossher, H. and Tarr, P. The shape of things to come: Using
multi-dimensional separation of concerns with Hyper/J to
(re)shape evolving software. Comm. ACM Vol. 44, No. 10,
2001, pp. 43–50.

[24] Pnueli A. The temporal logic of programs. Proc. 18th IEEE
Symp. Foundations of Computer Science, 1977, pp. 46–57.

[25] Savage S., Burrows M., Nelson G., Sobalvarro P., and
Anderson T. Eraser: A dynamic data race detector for multi-
threaded programs. ACM Transactions on Computer Sys-
tems, Vol. 15, No. 4, Nov. 1997.

[26] Schonger, S., Pulvermueller, E., and Sarstedt, S. Aspect ori-
ented programming and component weaving: using XML
representations of abstract syntax trees. Workshop Aspekto-
rientierte Softwareentwicklung, Institut für Informatik III,
Universität Bonn, Feb. 2002, i44w3.info.uni-karlsruhe.de
/~pulvermu/workshops/aosd2002/submissions/schonger.pdf.

[27] Skipper, M. A Model of composition oriented programming,
Proc. Workshop on Multi-Dimensional Separation of Con-
cerns in Software Engineering, Int’l Conf/ on Software Engi-
neering, Limerick, Ireland, June 2000, www.research.ibm.
com/hyperspace/workshops/icse2000/Papers/skipper.pdf

[28] Stoller S. D. Model-checking multi-threaded distributed Java
programs. International Journal on Software Tools for
Technology Transfer, in press.

[29] Sullivan, G. T. Aspect-oriented programming using reflec-
tion and meta-object protocols. Comm. ACM Vol. 44, No. 10,
2001, pp. 95–97.

[30] Teitelman, W. and Masinter, L. The Interlisp programming
environment. Computer Vol. 14, No. 4, 1981, pp. 25–34.

[31] Visser W., Havelund K., Brat G., and Park S. Model check-
ing programs. Proc. ASE’2000: The 15th IEEE Intl. Conf.
Automated Software Engineering, Sep. 2000, pp. 3–12.

[32] Walker, R. J. and Murphy, G. C. Joinpoints as ordered
events: towards applying implicit context to aspect-
orientation. Workshop on Advanced Separation of Concerns
in Software Engineering at ICSE, Toronto, May, 2001,
www.research.ibm.com/hyperspace/workshops/icse2001/
Papers/walker.pdf.


